
django-actrack Documentation
Release 1.1

Thomas Khyn

Jul 31, 2020

Contents

1 Quick start 3
1.1 Installation . 3
1.2 First steps . 3

2 Advanced features 7
2.1 Action creation parameters . 7
2.2 Action handlers . 7
2.3 Combination . 8
2.4 Grouping . 8
2.5 Deleted items . 8
2.6 Read / unread actions . 9
2.7 Rendering . 9

3 Settings 11

4 API 13
4.1 Functions . 13
4.2 Managers . 14
4.3 Models . 16

5 Indices and tables 19

Index 21

i

ii

django-actrack Documentation, Release 1.1

© 2014-2020 Thomas Khyn

django-actrack is an activity tracker for the Django framework. It enables recording any activity by any actor,
relative to any number of targets or related objects, with or without additional data. The activity can then be retrieved
through feeds associated to any instance linked to any action(s).

It has been tested with Django 2.2.* and 3.0.* and their matching Python versions (3.5 to 3.8).

If you like django-actrack and find it useful, you may want to thank me and encourage future development by sending
a few mBTC / mBCH / mBSV at this address: 1EwENyR8RV6tMc1hsLTkPURtn5wJgaBfG9.

Documentation contents:

Contents 1

django-actrack Documentation, Release 1.1

2 Contents

CHAPTER 1

Quick start

1.1 Installation

As straightforward as it can be, using pip:

pip install django-actrack

You then need to modify your INSTALLED_APPS settings:

• make sure it contains django.contrib.contenttypes

• add 'actrack' and gm2m

1.2 First steps

All right, let’s start tracking.

1.2.1 Logging activity

To track actions, the first things we need are . . . actions. Let’s generate and log some. We use the actrack.log
function:

import actrack

actrack.log(user, 'had_lunch')

user can be a user model instance (for example an instance of django.contrib.auth’s User model) but it
could as well be any instance of any model. It could be a train, for example (though trains usually don’t have lunch).

You can also provide targets and related objects to add information to the action:

3

django-actrack Documentation, Release 1.1

actrack.log(train, 'left_station', targets=[origin], related=[destination])

Or any relevant data as key-word arguments:

actrack.log(train, 'arrived', time=now())

OK, we’ve generated a few actions, let’s see how we can retrieve them.

1.2.2 Tracking activity

django-actrack uses trackers to retrieve actions associated to instances. If you want the user user (here it
needs to be an actual user, see below) to track all actions related to a given train, you can create a tracker using
actrack.track:

actrack.track(user, train)

This creates a tracker entry in the database that will be used to retrieve every activity related to train. train could
have been any other instance of any other model, or even a model class itself to follow any instance of that model, but
user must be an instance of the USER_MODEL specified in the Settings (which defaults to AUTH_USER_MODEL_).

1.2.3 Retrieving activity

To retrieve every action matching this tracker, django-actrack can provide convenient accessors, provided you
have connected the model to it beforehand using the @actrack.connect decorator:

@actrack.connect
class Train(models.Models):

...

‘Connecting’ django-actrack with a model will expose an actions attribute on every instance of the model:

all the actions where the train is involved
all_train_actions = train.actions.all()

actions where the train is involved as an actor, target or related object
train_actions_as_actor = train.actions.as_actor()
train_actions_as_target = train.actions.as_target()
train_actions_as_related = train.actions.as_related()

All the above will work for a given user instance or any instance which model has been connected to
django-actrack via the connect decorator.

Additionally, for user instances, we can invoke:

user_feed = user.actions.feed()

And this will fetch all the actions related to all the objects the user is tracking (trains, airplanes, cars, anything . . .)

Note: It is not always possible to use the connect decorator this way. The most common example is django.
contrib.auth.User. We therefore use connect as a simple function, somewhere in our app (for example in an
AppConfig subclass’ ready() method) so that it is executed when Django starts:

actrack.connect(UserModel)

4 Chapter 1. Quick start

django-actrack Documentation, Release 1.1

1.2.4 Next steps

Want to track more trains? Head to the Advanced features page to discover all the advanced stuff django-actrack
can offer, or check out the API and the Settings.

1.2. First steps 5

django-actrack Documentation, Release 1.1

6 Chapter 1. Quick start

CHAPTER 2

Advanced features

The Quick start section showed you how to log, track and retrieve activity related to given instances.

This section provides more details on django-actrack basic workflow and presents some of its more advanced
features.

2.1 Action creation parameters

Check the API documentation for actrack.log to learn more about the additional parameters that it can accept.

2.2 Action handlers

For each action you are using in your code, you can create a subclass of actrack.ActionHandler with a corre-
sponding verb class attribute that will be related to this action. An instance of this handler class will be attached to
any Action object that is created or retrieved, as the handler attribute:

from actrack import ActionHandler

class MyActionHandler(ActionHandler):
verb = 'my_action'

def render(self, context):
return 'I did that'

def do_something(self):
for t in self.action.targets.all():

do_something_with_this_target(t)

Handlers are used to process the action. The only special methods are:

render Called when you call render on an Action instance. See Rendering

7

django-actrack Documentation, Release 1.1

get_text Returns the text associated to the action

get_timeinfo Returns the time info of the action

get_context Returns a default rendering context for the action, should you need it for template rendering

combine(kwargs) [classmethod] See Combination

group(newer_kw, older_kw) [classmethod] See Grouping

See the actrack.handler module for default implementations.

You can of course override any of the above methods in the ActionHandler subclasses if you need to customise
how certain actions should be rendered or combined.

2.3 Combination

Sometimes, actions should be combined. Either because 2 same actions with different arguments occurred at the same
time, because two actions are redundant and should be merged, or for whatever app-dependant reason.

Only actions with the same actor and targets can be combined.

Action handlers can define custom combine_with_[verb] methods that determine what to do when a verb
action is already in the queue. The method takes the keyword arguments that would be passed to the ‘Action’ con-
structor, and can make use of self.queue, a registry of all the previously added keyword arguments in this request.
When this method returns True, the currently logged action is discarded. In this case, it is the responsibility of
combine_with_[verb] to amend the action to which the discarded action is combined.

Note that the combination occurs when the action is logged. If an action is combined / discarded, it is not placed into
the queue. The queue is saved to the database when a request finishes, after Grouping takes place.

2.4 Grouping

When the same action is repeated over a number of objects or on the same object, it is useless to show very similar
actions a number of times.

django-actrack provides a way to check if an action that is being logged is similar to recent actions and, if it
finds one, it amends it instead of creating a new one.

The definition of ‘recent’ can be changed by the GROUPING_DELAY setting, in seconds. Individually, it is also
possible to change this delay or disable action grouping when calling actrack.log using the grouping_delay
argument.

By default, an action is considered ‘similar’ if it has the same actor, and at least the same targets or related objects.
This can be customized by overriding the group method in the ActionHandler subclass relative to the relevant
action.

Grouping only occurs when the action queue is saved.

2.5 Deleted items

This is a great feature of django-actrack. If an object to which an action is related (the object can be the actor,
a target or related object) is deleted, the action itself can either be deleted (if passing use_del_items=False to
actrack.connect) or can remain. If it remains, its reference to the deleted item is replaced by a reference to an
instance of a special model, that stores a verbose description of the deleted item.

8 Chapter 2. Advanced features

https://github.com/tkhyn/django-actrack/src/release/actrack/handler.py

django-actrack Documentation, Release 1.1

For example, if the train instance is deleted (retired from the railway company’s network, for example), the actions
that had been generated beforehand refering to that train will not be deleted, and one will still be able to read when
the train started and when it arrived.

To retrieve the verbose description, django-actrack first looks for a deleted_item_description method,
calls it with no arguments and takes the returned string as the description. If that fails, it will simply evaluate the
instance as a string using str.

The same thing exists for serialization. By default, the serialization field of the deleted item instance
is populated with {'pk': object.pk} where object is the object being deleted. The value stored in
serialization can be customized on a per-instance basis using the deleted_item_serialization
method.

Warning: If you are logging an action involving an instance while deleting it (typically within a pre_delete or
post_delete signal handler), you need to turn it into a ‘deleted item’ first. This can be done using the function
actrack.deletion.get_del_item which takes the instance as an argument and returns a deleted item instance. Be
careful, get_del_item creates an entry for a deleted item in the database, so make sure you call it only when you
are actually deleting an instance

2.6 Read / unread actions

When the TRACK_UNREAD setting is set to True, django-actrack can make the distinction between read and
unread actions.

When a new action is created, it is simply considered ad unread by all users.

An action’s status can be retrieved using the Action.is_unread_for method, which takes a user as sole argu-
ment.

To update this status, you may use the Action.mark_read_for(user, force)method. forcewill override
the AUTO_READ setting.

Alternatively, if AUTO_READ is True, an action can be marked as read when it is rendered, using its rendermethod.

There are also classmethods on Action that implement the same functions on a sequence of actions:
bulk_is_unread_for, bulk_mark_read_for and bulk_render. All of them take an ordered sequence of
actions as first argument and return a list of booleans for the first two and strings for the third.

2.7 Rendering

Speaking about rendering, any action can be rendered through its render method. Action.render calls the
action handler’s render method, that can be overridden in subclasses of ActionHandler.

The ActionHandler.get_context method generates a useful default context dictionary from the attached ac-
tion data.

2.6. Read / unread actions 9

django-actrack Documentation, Release 1.1

10 Chapter 2. Advanced features

CHAPTER 3

Settings

The settings must be stored in your Django project’s settings module, as a dictionary name ACTRACK. This
dictionary may contain the following items:

USER_MODEL The user model that should be used for the owners of the tracker instances. Defaults to Django’s
AUTH_USER_MODEL

ACTIONS_ATTR The name of the accessor for actions, that can be changed in case it clashes with one of your
models’ fields. Defaults to 'actions'

TRACKERS_ATTR The name of the accessor for trackers, that can be changed in case it clashes with one of your
models’ fields. Defaults to 'trackers'

DEFAULT_HANDLER The path to the default action handler class (used when a matching action handler is not
found). Defaults to 'actrack.ActionHandler'

TRACK_UNREAD Should unread actions be tracked? Defaults to True.

AUTO_READ Should actions be automatically marked as read when rendered? Defaults to True.

GROUPING_DELAY The time in seconds after which an action cannot be merged with a more recent one. When
set to -1, grouping is disabled. When set to 0, grouping occurs only on unsaved actions. Defaults to 0

PK_MAXLENGTH The maximum length of the primary keys of the objects that will be linked to action (as targets
or related). Defaults to 16.

LEVELS A dictionary of logging levels. Defaults to:

{
'NULL': 0,
'DEBUG': 10,
'HIDDEN': 20,
'INFO': 30,
'WARNING': 40,
'ERROR': 50,

}

11

django-actrack Documentation, Release 1.1

Note: The logging levels should have upper case names and their values must be small positive integers from 0 to
32767

The defined logging levels can, after initialization, be accessed under the actrack.levelmodule. E.g. actrack.
level.INFO.

DEFAULT_LEVEL The default level to use for logging. Defaults to LEVELS['INFO']

READABLE_LEVEL Below that logging level (strictly), an action cannot appear as unread and cannot be marked
as read. Defaults to LEVELS['INFO']

12 Chapter 3. Settings

CHAPTER 4

API

django-actrack exposes several functions, models and managers.

4.1 Functions

This section lists all the functions exposed by django-actrack and documents their keyword arguments.

4.1.1 actrack.log(actor, verb, **kwargs)

Mandatory arguments:

actor The instance that generates the activity. Can be any instance of any model, does not have to be a user.

verb A string identifying the action. Tip: make it meaningful. The verb is used to retrieve a matching Action handlers
subclass

Optional keyword arguments:

targets A model instance or list of model instances being directly affected by the new action.

related A model instance or list of model instances being related to the new action.

Note: Technically, the targets and related object lists are redundant and they could be merged. However it can
be meaningful or practical to split the objects in two groups, hence the distinction.

timestamp The timestamp that should be recorded for the action. If not provided, this default to now.

level The logging level of the new action. Logging levels can especially be used to filter actions that can be marked
as unread. See the LEVELS, READABLE_LEVEL and DEFAULT_LEVEL Settings.

using The database to store the new action in.

13

django-actrack Documentation, Release 1.1

grouping_delay If an action with the same verb has occurred within the last grouping_delay (in seconds), it
is merged with the current one. If it is set to 0, this prevents the action from being grouped. See Grouping.
Defaults to GROUPING_DELAY.

other keywords any other keyword will be included in the action’s data. They must only contain serializable data.

4.1.2 actrack.track(user, to_track, **kwargs)

actrack.track can be used either to create a tracker or modify an existing one. It can track model instances but
also model classes.

user The user who should track actions concerning to_track. Must be an instance of the model defined by
AUTH_USER_MODEL

to_track Actions relative to this model instance will appear in the user’s actions feed

log If set to True, the function will log an action with the verb ‘started tracking’. Defaults to False

actor_only Will track actions only when the provided tracked object is the actor of an action. Default to True.

using The database to store the new tracker in.

verbs The verbs to track. Exclude any action that does not match the provide verbs. Defaults to any verb.

4.1.3 actrack.untrack(user, to_untrack, **kwargs)

Deletes a tracker object or deletes some verbs from its verbs set.

Mandatory arguments:

user See actrack.track

to_untrack The model instance to untrack

Optional keyword arguments:

log See actrack.track

verbs The verbs to stop tracking. If it is empty or equal to the current verbs set, no verb is to be tracked anymore and
the tracker is deleted. Defaults to all verbs.

using See actrack.track

4.1.4 @actrack.connect or actrack.connect(model)

The actrack.connect decorator can be used with an optional argument:

use_del_items Should the model that is to be connected use the deleted items feature? Defaults to True.

4.2 Managers

4.2.1 The actions manager

We’ve seen in the Quick start that connecting a django Model using the actrack.connect decorator exposed
an actions attribute on every instance of that Model. This actions attribute is actually a Django Manager that
queries Action instances:

14 Chapter 4. API

https://docs.djangoproject.com/en/2.0/topics/db/managers/

django-actrack Documentation, Release 1.1

@actrack.connect
class MyModel(models.Models):

...

instance = MyModel()

this returns a Manager to fetch actions
instance.actions

An actions manager has several useful methods:

instance.actions.as_actor(**kw) All the actions where instance is the actor.

instance.actions.as_target(**kw) All the actions where instance is among the targets.

instance.actions.as_related(**kw) All the actions where instance is among the related objects.

instance.actions.all() Overrides the normal allmethod and returns all the actions where instance is either
the actor or in the targets or related objects. It is a combination of the results of the 3 above methods.

instance.actions.feed(**kw) The most useful accessor. This will work only if instance is a user, and
will return all the instances that match all the trackers the user is associated with.

All these manager methods take keyword arguments to further filter the result queryset and only fetch the actions you
want (verbs, timestamp . . .).

4.2.2 The trackers manager

In addition to the actions attribute, actrack.connect makes another helpful manager available: the
trackers

this returns a Manager to fetch Tracker instances
instance.trackers

instance.tracker.tracking(**kw) All the trackers that are tracking the instance.

instance.tracker.users(**kw) All the users who are tracking the instance (= the owners of the trackers
tracking the instance returned by the above method).

instance.tracker.owned(**kw) Works only if instance is a user, returns all the trackers owned by the
instance.

instance.tracker.tracked(*models, **kw) Works only if instance is a user, returns all the objects
(various types) tracked by the user. Be aware that if there are model class trackers, there can be model classes
in the returned set.

instance.tracker.all() Overrides the normal all method. If instance is a user, will return a combination
of instance.tracker.owned() and instance.tracker.tracking. If not, it returns the same as
instance.tracker.tracking.

Similarly as above, these manager methods take keyword arguments to further filter the result queryset and only fetch
the trackers you want (except tracker.tracked that returns instances of different models).

4.2.3 The default Action manager

Just a small word on the manager associated with the Action model: it has a special method that returns all the actions
followed by a given tracker:

4.2. Managers 15

django-actrack Documentation, Release 1.1

Action.objects.tracked_by(tracker, **kw) Fetches all the Action instances tracked by the
tracker tracker.

4.3 Models

4.3.1 Action

The core model of django-actrack.

class actrack.models.Action(*args, **kwargs)
An action initiated by an actor and described by a verb. An action may have: - target objects (affected by the
action) - related objects (related to the action)

actor
The actor, can be anything

targets
The target objects, can contain several objects of different types

related
The related objects, can also contain several objects of different types

verb
The action’s verb or identifier

level
The action’s level

data
Data associated to the action (stored in a JSON field)

timestamp
The timestamp of the action, from which actions are ordered

is_unread_for(user)
Returns True if the action is unread for that user

mark_read_for(user, force=False)
Attempts to mark the action as read using the tracker’s mark_read method. Returns True if the action was
unread before To mark several actions as read, prefer the classmethod bulk_mark_read_for

render(user=None, context=None)
Renders the action, attempting to mark it as read if user is not None Returns a rendered string

classmethod bulk_is_unread_for(user, actions)
Does not bring any performance gains over Action.is_read method, exists for the sake of consistency with
bulk_mark_read_for and bulk_render

classmethod bulk_mark_read_for(user, actions, force=False)
Marks an iterable of actions as read for the given user It is more efficient than calling the mark_read method
on each action, especially if many actions belong to only a few followers

Returns a list l of booleans. If actions[i] was unread before the call to bulk_mark_read_for, l[i] is
True

classmethod bulk_render(actions=(), user=None, context=None)
Renders an iterable actions, returning a list of rendered strings in the same order as actions

If user is provided, the class method will attempt to mark the actions as read for the user using Ac-
tion.mark_read above

16 Chapter 4. API

django-actrack Documentation, Release 1.1

4.3.2 Trackers

django-actrack features two types of trackers. A Tracker model (which instances are stored in the database)
and a non-persistent TempTracker class which is not actually a model but instead can be used to generate read-only
queries on-the-fly.

class actrack.models.Tracker(*args, **kwargs)
Action tracking object, so that a user can track the actions on specific objects

user
The user to which the tracker instance is attached

tracked
The tracked object

verbs
All the verbs that are tracked (when empty, that means ‘all verbs’)

actor_only
Should the tracker only track actions where the tracked object is the actor?

update_unread()
Retrieves the actions having occurred after the last time the tracker was updated and mark them as unread
(bulk-add to unread_actions).

clean()
Hook for doing any extra model-wide validation after clean() has been called on every field by
self.clean_fields. Any ValidationError raised by this method will not be associated with a particular field;
it will have a special-case association with the field defined by NON_FIELD_ERRORS.

clean_fields(exclude=None)
Clean all fields and raise a ValidationError containing a dict of all validation errors if any occur.

full_clean(exclude=None, validate_unique=True)
Call clean_fields(), clean(), and validate_unique() on the model. Raise a ValidationError for any errors that
occur.

get_deferred_fields()
Return a set containing names of deferred fields for this instance.

matches(action)
Returns true if an action is to be tracked by the Tracker object

refresh_from_db(using=None, fields=None)
Reload field values from the database.

By default, the reloading happens from the database this instance was loaded from, or by the read router if
this instance wasn’t loaded from any database. The using parameter will override the default.

Fields can be used to specify which fields to reload. The fields should be an iterable of field attnames. If
fields is None, then all non-deferred fields are reloaded.

When accessing deferred fields of an instance, the deferred loading of the field will call this method.

save(force_insert=False, force_update=False, using=None, update_fields=None)
Save the current instance. Override this in a subclass if you want to control the saving process.

The ‘force_insert’ and ‘force_update’ parameters can be used to insist that the “save” must be an SQL
insert or update (or equivalent for non-SQL backends), respectively. Normally, they should not be set.

save_base(raw=False, force_insert=False, force_update=False, using=None, update_fields=None)
Handle the parts of saving which should be done only once per save, yet need to be done in raw saves, too.
This includes some sanity checks and signal sending.

4.3. Models 17

django-actrack Documentation, Release 1.1

The ‘raw’ argument is telling save_base not to save any parent models and not to do any changes to the
values before save. This is used by fixture loading.

serializable_value(field_name)
Return the value of the field name for this instance. If the field is a foreign key, return the id value instead
of the object. If there’s no Field object with this name on the model, return the model attribute’s value.

Used to serialize a field’s value (in the serializer, or form output, for example). Normally, you would just
access the attribute directly and not use this method.

validate_unique(exclude=None)
Check unique constraints on the model and raise ValidationError if any failed.

class actrack.models.TempTracker(user, tracked, verbs=(), actor_only=True,
last_updated=None)

A tracker that is designed to be used ‘on the fly’ and is not saved in the database Typically used to retrieve all
actions regarding an object, without needing to specifically track this object

matches(action)
Returns true if an action is to be tracked by the Tracker object

update_unread(already_fetched=())
Retrieves the actions having occurred after the last time the tracker was updated and mark them as unread
(bulk-add to unread_actions).

4.3.3 DeletedItem

See Deleted items.

class actrack.models.DeletedItem(*args, **kwargs)
A model to keep track of objects that have been deleted but that still need to be linked by Action instances

ctype
The deleted instance’s content type

description
The deleted instance’s description when the instance was deleted

serialization
The deleted instance’s serialization in JSON when the instance was deleted

Warning: This documentation is a work in progress. Some features may be undocumented, or only lightly
documented. It may be necessary to have a look at the source code for more details on some features.

18 Chapter 4. API

https://github.com/tkhyn/django-actrack/src

CHAPTER 5

Indices and tables

• genindex

• modindex

• search

19

django-actrack Documentation, Release 1.1

20 Chapter 5. Indices and tables

Index

A
Action (class in actrack.models), 16
actor (actrack.models.Action attribute), 16
actor_only (actrack.models.Tracker attribute), 17

B
bulk_is_unread_for() (actrack.models.Action

class method), 16
bulk_mark_read_for() (actrack.models.Action

class method), 16
bulk_render() (actrack.models.Action class

method), 16

C
clean() (actrack.models.Tracker method), 17
clean_fields() (actrack.models.Tracker method),

17
ctype (actrack.models.DeletedItem attribute), 18

D
data (actrack.models.Action attribute), 16
DeletedItem (class in actrack.models), 18
description (actrack.models.DeletedItem attribute),

18

F
full_clean() (actrack.models.Tracker method), 17

G
get_deferred_fields() (actrack.models.Tracker

method), 17

I
is_unread_for() (actrack.models.Action method),

16

L
level (actrack.models.Action attribute), 16

M
mark_read_for() (actrack.models.Action method),

16
matches() (actrack.models.TempTracker method), 18
matches() (actrack.models.Tracker method), 17

R
refresh_from_db() (actrack.models.Tracker

method), 17
related (actrack.models.Action attribute), 16
render() (actrack.models.Action method), 16

S
save() (actrack.models.Tracker method), 17
save_base() (actrack.models.Tracker method), 17
serializable_value() (actrack.models.Tracker

method), 18
serialization (actrack.models.DeletedItem at-

tribute), 18

T
targets (actrack.models.Action attribute), 16
TempTracker (class in actrack.models), 18
timestamp (actrack.models.Action attribute), 16
tracked (actrack.models.Tracker attribute), 17
Tracker (class in actrack.models), 17

U
update_unread() (actrack.models.TempTracker

method), 18
update_unread() (actrack.models.Tracker method),

17
user (actrack.models.Tracker attribute), 17

V
validate_unique() (actrack.models.Tracker

method), 18
verb (actrack.models.Action attribute), 16
verbs (actrack.models.Tracker attribute), 17

21

	Quick start
	Installation
	First steps

	Advanced features
	Action creation parameters
	Action handlers
	Combination
	Grouping
	Deleted items
	Read / unread actions
	Rendering

	Settings
	API
	Functions
	Managers
	Models

	Indices and tables
	Index

