

django-actrack

© 2014-2020 Thomas Khyn

django-actrack is an activity tracker for the Django framework. It enables
recording any activity by any actor, relative to any number of targets or
related objects, with or without additional data. The activity can then be
retrieved through feeds associated to any instance linked to any action(s).

It has been tested with Django 2.2.* and 3.0.* and their matching Python versions (3.5 to 3.8).

If you like django-actrack and find it useful, you may want to thank me and
encourage future development by sending a few mBTC / mBCH / mBSV at this address:
1EwENyR8RV6tMc1hsLTkPURtn5wJgaBfG9.

Documentation contents:

	Quick start
	Installation

	First steps

	Advanced features
	Action creation parameters

	Action handlers

	Combination

	Grouping

	Deleted items

	Read / unread actions

	Rendering

	Settings

	API
	Functions

	Managers

	Models

Warning

This documentation is a work in progress. Some features may be undocumented,
or only lightly documented. It may be necessary to have a look at the
source code [https://github.com/tkhyn/django-actrack/src] for more details on some features.

Indices and tables

	Index

	Module Index

	Search Page

Quick start

Installation

As straightforward as it can be, using pip:

pip install django-actrack

You then need to modify your INSTALLED_APPS settings:

	make sure it contains django.contrib.contenttypes

	add 'actrack' and gm2m

First steps

All right, let’s start tracking.

Logging activity

To track actions, the first things we need are … actions. Let’s generate and
log some. We use the actrack.log function:

import actrack

actrack.log(user, 'had_lunch')

user can be a user model instance (for example an instance of
django.contrib.auth’s User model) but it could as well be any instance
of any model. It could be a train, for example (though trains usually don’t
have lunch).

You can also provide targets and related objects to add information to the
action:

actrack.log(train, 'left_station', targets=[origin], related=[destination])

Or any relevant data as key-word arguments:

actrack.log(train, 'arrived', time=now())

OK, we’ve generated a few actions, let’s see how we can retrieve them.

Tracking activity

django-actrack uses trackers to retrieve actions associated to instances.
If you want the user user (here it needs to be an actual user, see below) to
track all actions related to a given train, you can create a tracker using
actrack.track:

actrack.track(user, train)

This creates a tracker entry in the database that will be used to retrieve
every activity related to train. train could have been any other
instance of any other model, or even a model class itself to follow any instance
of that model, but user must be an instance of the USER_MODEL specified
in the Settings (which defaults to AUTH_USER_MODEL_).

Retrieving activity

To retrieve every action matching this tracker, django-actrack can provide
convenient accessors, provided you have connected the model to it beforehand
using the @actrack.connect decorator:

@actrack.connect
class Train(models.Models):
 ...

‘Connecting’ django-actrack with a model will expose an actions
attribute on every instance of the model:

all the actions where the train is involved
all_train_actions = train.actions.all()

actions where the train is involved as an actor, target or related object
train_actions_as_actor = train.actions.as_actor()
train_actions_as_target = train.actions.as_target()
train_actions_as_related = train.actions.as_related()

All the above will work for a given user instance or any instance which model
has been connected to django-actrack via the connect decorator.

Additionally, for user instances, we can invoke:

user_feed = user.actions.feed()

And this will fetch all the actions related to all the objects the user is
tracking (trains, airplanes, cars, anything …)

Note

It is not always possible to use the connect decorator this way.
The most common example is django.contrib.auth.User. We therefore use
connect as a simple function, somewhere in our app (for example in an
AppConfig subclass’ ready() method) so that it is executed when
Django starts:

actrack.connect(UserModel)

Next steps

Want to track more trains? Head to the Advanced features page to discover all the
advanced stuff django-actrack can offer, or check out the API and the
Settings.

Advanced features

The Quick start section showed you how to log, track and retrieve
activity related to given instances.

This section provides more details on django-actrack basic workflow and
presents some of its more advanced features.

Action creation parameters

Check the API documentation for actrack.log to learn more
about the additional parameters that it can accept.

Action handlers

For each action you are using in your code, you can create a subclass of
actrack.ActionHandler with a corresponding verb class attribute that
will be related to this action. An instance of this handler class will be
attached to any Action object that is created or retrieved, as the
handler attribute:

from actrack import ActionHandler

class MyActionHandler(ActionHandler):
 verb = 'my_action'

 def render(self, context):
 return 'I did that'

 def do_something(self):
 for t in self.action.targets.all():
 do_something_with_this_target(t)

Handlers are used to process the action. The only special methods are:

	render

	Called when you call render on an Action instance. See Rendering

	get_text

	Returns the text associated to the action

	get_timeinfo

	Returns the time info of the action

	get_context

	Returns a default rendering context for the action, should you need it
for template rendering

	combine(kwargs) [classmethod]

	See Combination

	group(newer_kw, older_kw) [classmethod]

	See Grouping

See the actrack.handler module [https://github.com/tkhyn/django-actrack/src/release/actrack/handler.py] for default implementations.

You can of course override any of the above methods in the ActionHandler
subclasses if you need to customise how certain actions should be rendered or
combined.

Combination

Sometimes, actions should be combined. Either because 2 same actions with
different arguments occurred at the same time, because two actions are
redundant and should be merged, or for whatever app-dependant reason.

Only actions with the same actor and targets can be combined.

Action handlers can define custom combine_with_[verb] methods that
determine what to do when a verb action is already in the queue. The method
takes the keyword arguments that would be passed to the ‘Action’
constructor, and can make use of self.queue, a registry of all the
previously added keyword arguments in this request. When this method returns
True, the currently logged action is discarded. In this case, it is the
responsibility of combine_with_[verb] to amend the action to which the
discarded action is combined.

Note that the combination occurs when the action is logged. If an action is
combined / discarded, it is not placed into the queue. The queue is saved to
the database when a request finishes, after Grouping takes place.

Grouping

When the same action is repeated over a number of objects or on the same
object, it is useless to show very similar actions a number of times.

django-actrack provides a way to check if an action that is being logged
is similar to recent actions and, if it finds one, it amends it instead of
creating a new one.

The definition of ‘recent’ can be changed by the GROUPING_DELAY setting, in
seconds. Individually, it is also possible to change this delay or disable
action grouping when calling actrack.log using the grouping_delay
argument.

By default, an action is considered ‘similar’ if it has the same actor, and at
least the same targets or related objects. This can be customized by
overriding the group method in the ActionHandler subclass relative to
the relevant action.

Grouping only occurs when the action queue is saved.

Deleted items

This is a great feature of django-actrack. If an object to which an action
is related (the object can be the actor, a target or related object) is
deleted, the action itself can either be deleted (if passing
use_del_items=False to actrack.connect) or can remain. If it remains,
its reference to the deleted item is replaced by a reference to an instance of
a special model, that stores a verbose description of the deleted item.

For example, if the train instance is deleted (retired from the railway
company’s network, for example), the actions that had been generated beforehand
refering to that train will not be deleted, and one will still be able to
read when the train started and when it arrived.

To retrieve the verbose description, django-actrack first looks for a
deleted_item_description method, calls it with no arguments and takes the
returned string as the description. If that fails, it will simply evaluate
the instance as a string using str.

The same thing exists for serialization. By default, the serialization
field of the deleted item instance is populated with {'pk': object.pk}
where object is the object being deleted. The value stored in
serialization can be customized on a per-instance basis using the
deleted_item_serialization method.

Warning

If you are logging an action involving an instance while deleting it
(typically within a pre_delete or post_delete signal handler), you need
to turn it into a ‘deleted item’ first. This can be done using the function
actrack.deletion.get_del_item which takes the instance as an argument and
returns a deleted item instance. Be careful, get_del_item creates an entry
for a deleted item in the database, so make sure you call it only when you
are actually deleting an instance

Read / unread actions

When the TRACK_UNREAD setting is set to True,
django-actrack can make the distinction between read and unread actions.

When a new action is created, it is simply considered ad unread by all users.

An action’s status can be retrieved using the Action.is_unread_for method,
which takes a user as sole argument.

To update this status, you may use the Action.mark_read_for(user, force)
method. force will override the AUTO_READ setting.

Alternatively, if AUTO_READ is True, an action can be marked as read
when it is rendered, using its render method.

There are also classmethods on Action that implement the same functions on
a sequence of actions: bulk_is_unread_for, bulk_mark_read_for and
bulk_render. All of them take an ordered sequence of actions as first
argument and return a list of booleans for the first two and strings for the
third.

Rendering

Speaking about rendering, any action can be rendered through its render
method. Action.render calls the action handler’s render method, that
can be overridden in subclasses of ActionHandler.

The ActionHandler.get_context method generates a useful default context
dictionary from the attached action data.

Settings

The settings must be stored in your Django project’s settings module, as
a dictionary name ACTRACK. This dictionary may contain the following items:

	USER_MODEL

	The user model that should be used for the owners of the tracker instances.
Defaults to Django’s AUTH_USER_MODEL

	ACTIONS_ATTR

	The name of the accessor for actions, that can be changed in case it clashes
with one of your models’ fields. Defaults to 'actions'

	TRACKERS_ATTR

	The name of the accessor for trackers, that can be changed in case it clashes
with one of your models’ fields. Defaults to 'trackers'

	DEFAULT_HANDLER

	The path to the default action handler class (used when a matching action
handler is not found). Defaults to 'actrack.ActionHandler'

	TRACK_UNREAD

	Should unread actions be tracked? Defaults to True.

	AUTO_READ

	Should actions be automatically marked as read when rendered? Defaults to
True.

	GROUPING_DELAY

	The time in seconds after which an action cannot be merged with a more
recent one. When set to -1, grouping is disabled. When set to 0,
grouping occurs only on unsaved actions. Defaults to 0

	PK_MAXLENGTH

	The maximum length of the primary keys of the objects that will be linked
to action (as targets or related). Defaults to 16.

	LEVELS

	A dictionary of logging levels. Defaults to:

{
 'NULL': 0,
 'DEBUG': 10,
 'HIDDEN': 20,
 'INFO': 30,
 'WARNING': 40,
 'ERROR': 50,
}

Note

The logging levels should have upper case names and their values must be
small positive integers from 0 to 32767

The defined logging levels can, after initialization, be accessed under the
actrack.level module. E.g. actrack.level.INFO.

	DEFAULT_LEVEL

	The default level to use for logging. Defaults to LEVELS['INFO']

	READABLE_LEVEL

	Below that logging level (strictly), an action cannot appear as unread and
cannot be marked as read. Defaults to LEVELS['INFO']

API

django-actrack exposes several functions, models and managers.

	Functions
	actrack.log(actor, verb, **kwargs)

	actrack.track(user, to_track, **kwargs)

	actrack.untrack(user, to_untrack, **kwargs)

	@actrack.connect or actrack.connect(model)

	Managers
	The actions manager

	The trackers manager

	The default Action manager

	Models
	Action

	Trackers

	DeletedItem

Functions

This section lists all the functions exposed by django-actrack and documents
their keyword arguments.

actrack.log(actor, verb, **kwargs)

Mandatory arguments:

	actor

	The instance that generates the activity. Can be any instance of any model,
does not have to be a user.

	verb

	A string identifying the action. Tip: make it meaningful. The verb is used
to retrieve a matching Action handlers subclass

Optional keyword arguments:

	targets

	A model instance or list of model instances being directly affected by the
new action.

	related

	A model instance or list of model instances being related to the new action.

Note

Technically, the targets and related object lists are redundant and
they could be merged. However it can be meaningful or practical to split the
objects in two groups, hence the distinction.

	timestamp

	The timestamp that should be recorded for the action. If not provided, this
default to now.

	level

	The logging level of the new action. Logging levels can especially be used
to filter actions that can be marked as unread. See the LEVELS,
READABLE_LEVEL and DEFAULT_LEVEL Settings.

	using

	The database to store the new action in.

	grouping_delay

	If an action with the same verb has occurred within the last
grouping_delay (in seconds), it is merged with the current one. If it
is set to 0, this prevents the action from being grouped. See
Grouping. Defaults to GROUPING_DELAY.

	other keywords

	any other keyword will be included in the action’s data. They must only
contain serializable data.

actrack.track(user, to_track, **kwargs)

actrack.track can be used either to create a tracker or modify an existing
one. It can track model instances but also model classes.

	user

	The user who should track actions concerning to_track. Must be an
instance of the model defined by AUTH_USER_MODEL

	to_track

	Actions relative to this model instance will appear in the user’s
actions feed

	log

	If set to True, the function will log an action with the verb
‘started tracking’. Defaults to False

	actor_only

	Will track actions only when the provided tracked object is the actor of
an action. Default to True.

	using

	The database to store the new tracker in.

	verbs

	The verbs to track. Exclude any action that does not match the provide
verbs. Defaults to any verb.

actrack.untrack(user, to_untrack, **kwargs)

Deletes a tracker object or deletes some verbs from its verbs set.

Mandatory arguments:

	user

	See actrack.track

	to_untrack

	The model instance to untrack

Optional keyword arguments:

	log

	See actrack.track

	verbs

	The verbs to stop tracking. If it is empty or equal to the current verbs
set, no verb is to be tracked anymore and the tracker is deleted. Defaults
to all verbs.

	using

	See actrack.track

@actrack.connect or actrack.connect(model)

The actrack.connect decorator can be used with an optional argument:

	use_del_items

	Should the model that is to be connected use the
deleted items feature? Defaults to True.

Managers

The actions manager

We’ve seen in the Quick start that connecting a django Model using the
actrack.connect decorator exposed an actions attribute on every instance
of that Model. This actions attribute is actually a Django Manager [https://docs.djangoproject.com/en/2.0/topics/db/managers/] that
queries Action instances:

@actrack.connect
class MyModel(models.Models):
 ...

instance = MyModel()

this returns a Manager to fetch actions
instance.actions

An actions manager has several useful methods:

	instance.actions.as_actor(**kw)

	All the actions where instance is the actor.

	instance.actions.as_target(**kw)

	All the actions where instance is among the targets.

	instance.actions.as_related(**kw)

	All the actions where instance is among the related objects.

	instance.actions.all()

	Overrides the normal all method and returns all the actions where
instance is either the actor or in the targets or related objects. It is
a combination of the results of the 3 above methods.

	instance.actions.feed(**kw)

	The most useful accessor. This will work only if instance is a user, and
will return all the instances that match all the trackers the user is
associated with.

All these manager methods take keyword arguments to further filter the result
queryset and only fetch the actions you want (verbs, timestamp …).

The trackers manager

In addition to the actions attribute, actrack.connect makes another
helpful manager available: the trackers

this returns a Manager to fetch Tracker instances
instance.trackers

	instance.tracker.tracking(**kw)

	All the trackers that are tracking the instance.

	instance.tracker.users(**kw)

	All the users who are tracking the instance (= the owners of the trackers
tracking the instance returned by the above method).

	instance.tracker.owned(**kw)

	Works only if instance is a user, returns all the trackers owned by the
instance.

	instance.tracker.tracked(*models, **kw)

	Works only if instance is a user, returns all the objects (various types)
tracked by the user. Be aware that if there are model class trackers, there
can be model classes in the returned set.

	instance.tracker.all()

	Overrides the normal all method. If instance is a user, will return a
combination of instance.tracker.owned() and
instance.tracker.tracking. If not, it returns the same as
instance.tracker.tracking.

Similarly as above, these manager methods take keyword arguments to further
filter the result queryset and only fetch the trackers you want (except
tracker.tracked that returns instances of different models).

The default Action manager

Just a small word on the manager associated with the Action model: it
has a special method that returns all the actions followed by a given tracker:

	Action.objects.tracked_by(tracker, **kw)

	Fetches all the Action instances tracked by the tracker tracker.

Models

Action

The core model of django-actrack.

	
class actrack.models.Action(*args, **kwargs)

	An action initiated by an actor and described by a verb.
An action may have:
- target objects (affected by the action)
- related objects (related to the action)

	
actor

	The actor, can be anything

	
targets

	The target objects, can contain several objects of different types

	
related

	The related objects, can also contain several objects of different types

	
verb

	The action’s verb or identifier

	
level

	The action’s level

	
data

	Data associated to the action (stored in a JSON field)

	
timestamp

	The timestamp of the action, from which actions are ordered

	
is_unread_for(user)

	Returns True if the action is unread for that user

	
mark_read_for(user, force=False)

	Attempts to mark the action as read using the tracker’s mark_read
method. Returns True if the action was unread before
To mark several actions as read, prefer the classmethod
bulk_mark_read_for

	
render(user=None, context=None)

	Renders the action, attempting to mark it as read if user is not None
Returns a rendered string

	
classmethod bulk_is_unread_for(user, actions)

	Does not bring any performance gains over Action.is_read method, exists
for the sake of consistency with bulk_mark_read_for and bulk_render

	
classmethod bulk_mark_read_for(user, actions, force=False)

	Marks an iterable of actions as read for the given user
It is more efficient than calling the mark_read method on each action,
especially if many actions belong to only a few followers

Returns a list l of booleans. If actions[i] was unread before
the call to bulk_mark_read_for, l[i] is True

	
classmethod bulk_render(actions=(), user=None, context=None)

	Renders an iterable actions, returning a list of rendered
strings in the same order as actions

If user is provided, the class method will attempt to mark the
actions as read for the user using Action.mark_read above

Trackers

django-actrack features two types of trackers. A Tracker model (which
instances are stored in the database) and a non-persistent TempTracker
class which is not actually a model but instead can be used to generate
read-only queries on-the-fly.

	
class actrack.models.Tracker(*args, **kwargs)

	Action tracking object, so that a user can track the actions on specific
objects

	
user

	The user to which the tracker instance is attached

	
tracked

	The tracked object

	
verbs

	All the verbs that are tracked (when empty, that means ‘all verbs’)

	
actor_only

	Should the tracker only track actions where the tracked object is the
actor?

	
update_unread()

	Retrieves the actions having occurred after the last time the tracker
was updated and mark them as unread (bulk-add to unread_actions).

	
clean()

	Hook for doing any extra model-wide validation after clean() has been
called on every field by self.clean_fields. Any ValidationError raised
by this method will not be associated with a particular field; it will
have a special-case association with the field defined by NON_FIELD_ERRORS.

	
clean_fields(exclude=None)

	Clean all fields and raise a ValidationError containing a dict
of all validation errors if any occur.

	
full_clean(exclude=None, validate_unique=True)

	Call clean_fields(), clean(), and validate_unique() on the model.
Raise a ValidationError for any errors that occur.

	
get_deferred_fields()

	Return a set containing names of deferred fields for this instance.

	
matches(action)

	Returns true if an action is to be tracked by the Tracker object

	
refresh_from_db(using=None, fields=None)

	Reload field values from the database.

By default, the reloading happens from the database this instance was
loaded from, or by the read router if this instance wasn’t loaded from
any database. The using parameter will override the default.

Fields can be used to specify which fields to reload. The fields
should be an iterable of field attnames. If fields is None, then
all non-deferred fields are reloaded.

When accessing deferred fields of an instance, the deferred loading
of the field will call this method.

	
save(force_insert=False, force_update=False, using=None, update_fields=None)

	Save the current instance. Override this in a subclass if you want to
control the saving process.

The ‘force_insert’ and ‘force_update’ parameters can be used to insist
that the “save” must be an SQL insert or update (or equivalent for
non-SQL backends), respectively. Normally, they should not be set.

	
save_base(raw=False, force_insert=False, force_update=False, using=None, update_fields=None)

	Handle the parts of saving which should be done only once per save,
yet need to be done in raw saves, too. This includes some sanity
checks and signal sending.

The ‘raw’ argument is telling save_base not to save any parent
models and not to do any changes to the values before save. This
is used by fixture loading.

	
serializable_value(field_name)

	Return the value of the field name for this instance. If the field is
a foreign key, return the id value instead of the object. If there’s
no Field object with this name on the model, return the model
attribute’s value.

Used to serialize a field’s value (in the serializer, or form output,
for example). Normally, you would just access the attribute directly
and not use this method.

	
validate_unique(exclude=None)

	Check unique constraints on the model and raise ValidationError if any
failed.

	
class actrack.models.TempTracker(user, tracked, verbs=(), actor_only=True, last_updated=None)

	A tracker that is designed to be used ‘on the fly’ and is not saved in
the database
Typically used to retrieve all actions regarding an object, without needing
to specifically track this object

	
matches(action)

	Returns true if an action is to be tracked by the Tracker object

	
update_unread(already_fetched=())

	Retrieves the actions having occurred after the last time the tracker
was updated and mark them as unread (bulk-add to unread_actions).

DeletedItem

See Deleted items.

	
class actrack.models.DeletedItem(*args, **kwargs)

	A model to keep track of objects that have been deleted but that still
need to be linked by Action instances

	
ctype

	The deleted instance’s content type

	
description

	The deleted instance’s description when the instance was deleted

	
serialization

	The deleted instance’s serialization in JSON when the instance was
deleted

Index

 A
 | B
 | C
 | D
 | F
 | G
 | I
 | L
 | M
 | R
 | S
 | T
 | U
 | V

A

 	
 	Action (class in actrack.models)

 	
 	actor (actrack.models.Action attribute)

 	actor_only (actrack.models.Tracker attribute)

B

 	
 	bulk_is_unread_for() (actrack.models.Action class method)

 	
 	bulk_mark_read_for() (actrack.models.Action class method)

 	bulk_render() (actrack.models.Action class method)

C

 	
 	clean() (actrack.models.Tracker method)

 	
 	clean_fields() (actrack.models.Tracker method)

 	ctype (actrack.models.DeletedItem attribute)

D

 	
 	data (actrack.models.Action attribute)

 	
 	DeletedItem (class in actrack.models)

 	description (actrack.models.DeletedItem attribute)

F

 	
 	full_clean() (actrack.models.Tracker method)

G

 	
 	get_deferred_fields() (actrack.models.Tracker method)

I

 	
 	is_unread_for() (actrack.models.Action method)

L

 	
 	level (actrack.models.Action attribute)

M

 	
 	mark_read_for() (actrack.models.Action method)

 	
 	matches() (actrack.models.TempTracker method)

 	(actrack.models.Tracker method)

R

 	
 	refresh_from_db() (actrack.models.Tracker method)

 	
 	related (actrack.models.Action attribute)

 	render() (actrack.models.Action method)

S

 	
 	save() (actrack.models.Tracker method)

 	save_base() (actrack.models.Tracker method)

 	
 	serializable_value() (actrack.models.Tracker method)

 	serialization (actrack.models.DeletedItem attribute)

T

 	
 	targets (actrack.models.Action attribute)

 	TempTracker (class in actrack.models)

 	
 	timestamp (actrack.models.Action attribute)

 	tracked (actrack.models.Tracker attribute)

 	Tracker (class in actrack.models)

U

 	
 	update_unread() (actrack.models.TempTracker method)

 	(actrack.models.Tracker method)

 	
 	user (actrack.models.Tracker attribute)

V

 	
 	validate_unique() (actrack.models.Tracker method)

 	
 	verb (actrack.models.Action attribute)

 	verbs (actrack.models.Tracker attribute)

 _static/down.png

_static/comment.png

_static/down-pressed.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/comment-close.png

nav.xhtml

 Table of Contents

 		
 django-actrack

 		
 Quick start

 		
 Installation

 		
 First steps

 		
 Logging activity

 		
 Tracking activity

 		
 Retrieving activity

 		
 Next steps

 		
 Advanced features

 		
 Action creation parameters

 		
 Action handlers

 		
 Combination

 		
 Grouping

 		
 Deleted items

 		
 Read / unread actions

 		
 Rendering

 		
 Settings

 		
 API

 		
 Functions

 		
 actrack.log(actor, verb, **kwargs)

 		
 actrack.track(user, to_track, **kwargs)

 		
 actrack.untrack(user, to_untrack, **kwargs)

 		
 @actrack.connect or actrack.connect(model)

 		
 Managers

 		
 The actions manager

 		
 The trackers manager

 		
 The default Action manager

 		
 Models

 		
 Action

 		
 Trackers

 		
 DeletedItem

